
Interacting with Programs
Linux Command Line

Yan Shoshitaishvili
Arizona State University

Hello Students
You've (better have) seen this:

./helloworld
Hello world!

But what happens under the hood?

Linux
In this class, we'll focus on Linux.

Linux facilitates the safe interaction of
Processes with each other and with the File
System, the Network, and Computer
Hardware.

The pwn.college infrastructure provides you a
with a Linux environment. You will interact with
this environment via the Command Line.

Command Line?
The command line (aka "shell") is a powerful interface to a computer. Basic idea:

1. You type a command.
2. The system executes it and outputs the results.

Typically, a command will contain a program name and arguments to that
program, separated by spaces.

What happened?
1. I told the shell to run the program cat with the argument flag.
2. The shell found the cat program file and launched it into a cat process with a

flag argument.
3. cat is a program that outputs files. It reads the flag argument and knows to

output the flag file, which contains "pwn_college{1337}".

Learning the Command Line
You really should be comfortable with the command line by now. If you are not:

1. Bandit (https://overthewire.org/wargames/bandit/) is a hands-on "wargame" that will teach you how
to use the commandline.

2. There are many online tutorials.
3. Documentation!

a. man (manual) pages. Example of man cat:

b. help for shell "builtins". For example, help cd:

4. Ask for help on discord.

https://overthewire.org/wargames/bandit/

Processes
A process is a running program.

A program is a file on your computer.

Files live in a filesystem.

Your web browser, your command line interpreter ("shell"), your text editor, all
start out as files on the filesystem and become processes when they are
executed.

We'll learn more about processes in the rest of this module.

The File System
Files are organized into file systems.

Unlike Windows (which traditionally has different file systems at different anchor
points C:\, D:\, E:\, etc.), Linux presents a unified file system view.

/ The "anchor" of the filesystem. Pronounced "root".

/usr The Unix System Resource. Contains all the system files.

/usr/bin Executable files for programs installed on the computer.

/usr/lib Shared libraries for use by programs on the computer.

/usr/share Program resources (icons, art assets, etc).

/etc System configuration.

/var Logs, caches, etc.

/home User-owned data.

/home/hacker Data owned by you in the pwn.college infrastructure.

/proc Runtime process data.

/tmp Temporary data storage.

Directories
Files are stored in directories in the filesystem. Each directory has several files.

Each process has a "current working directory". You can view it with the pwd
builtin (and it usually shows in your prompt) and change it with the cd builtin.

You can list the files in a directory using the ls command. With no arguments, it
will list the files in the current directory.

Specifying paths...
There are two ways to specify paths:

Absolute Paths start with /, such as /usr, /home/yans/flags/TOPSECRET, etc.

Relative Paths don't start with /, and are relative to the current working directory.

Relative path!

Relative path!

Absolute path!

Relative path!

Closer look: Paths
A "path" contains:

- Possible leading "/" to specify that the path is absolute (starts at the root).
- Directory names, followed by "/" to reference resources "inside" a directory.
- A ".", signifying "current directory".
- A "..", signifying "the directory that the current directory lives in".
- A file name at the end of the path, referencing a file with that name.

Paths to commands
Wait a second... Where is cat???

If the first word of the command has no / characters, the shell will search for it in
either its builtins or a set of directories specified in the PATH environment
variable.

What?

Interlude: Environment Variables?
"Environment variables" are a set of Key/Value pairs passed into every process
when it is launched. Critical variables:

PATH: a list of directories to search for programs in.
PWD: the current working directory (same as the pwd command)
HOME: the path to your home directory
HOSTNAME: the name of your system

You can print environment variables with the
env command, and set them with shell syntax.

env is a very useful command. Study its man
page!

Back to paths.
If you're curious about what program file ends up becoming your cat process
after it's found using the PATH variable, use which.

You can also launch programs with absolute or relative paths, which will not rely
on PATH.

A deeper look at files
There are many different types of files. You can use ls -ld /path/to/your/file
to check.

Types:
- is a regular file
d is a directory (yes, directories are actually just special files!)
l is a symbolic link (a file that transparently points to another file or directory)
p is a named pipe (also known as a FIFO. You will get very familiar with these this module!)
c is a character device file (i.e., backed by a hardware device that produces or receives data streams, such as a microphone)
b is a block device file (i.e., backed by a hardware device that stores and loads blocks of data, such as a hard drive)
s is a unix socket (essentially a local network connection encapsulated in a file)

Symbolic (AKA soft) links?
A symbolic/soft link is a special type of file that references another file.

They are created ln -s (-s stands for symbolic. Read the man page!).

You can also link directories:

Symbolic link gotchas
Beware: symbolic links to relative paths are relative to the directory containing
the link!

vs absolute path:

Hard links?
The existence of soft links implies a hard link.

Hard links (created with ln without the -s argument) reference the original file
directly by performing magic with scary words such as "inode".

A hard link is an equally "valid" reference to the original file as
the original file itself. It is a file that happens to be backed by
the same data as the original.

Further reading: https://medium.com/@meghamohan/hard-link-and-symbolic-link-3cad74e5b5dc

https://medium.com/@meghamohan/hard-link-and-symbolic-link-3cad74e5b5dc

Pipes!
Pipes facilitate a unidirectional flow of information. There are two types of pipes:

1. Unnamed pipes, ethereal channels of information between processes. Most
commonly used to direct data from one command to another.

2. Named pipes, also known as FIFOs, created using the
"mkfifo" command. Also used to help facilitate data flow
in certain situations.

Input and output redirection
Command output can be redirected to files, and command input can be provided
from files.

<in_file: redirect in_file into the command's input
>out_file: redirect the command's output into out_file, overwriting it
>>out_file: redirect the command's output into out_file, appending to it
2>error_file: redirect the command's errors into error_file, overwriting it
2>>error_file: redirect the command's errors into error_file, appending to it

