
Assembler Refresher
x86_64

Yan Shoshitaishvili
Arizona State University

Reminder: Computer Architecture
CPU

Memory

Disk

Network +
Others "S

om
e

so
rt

 o
f

br
id

ge
."

L2
Cache

L1 Cache

CU

ALU

Registers

L1 Cache

CU

ALU

Registers

Assembly
The only true programming language, as far as a CPU is concerned.

Concepts:
- instructions

- data manipulation instructions
- comparison instructions
- control flow instructions
- system calls

- registers
- memory

- program
- stack
- other mapped mem

Registers
Registers are very fast, temporary stores for data.
You get several "general purpose" registers:

- 8085: a, c, d, b, e, h, l
- 8086: ax, cx, dx, bx, sp, bp, si, di
- x86: eax, ecx, edx, ebx, esp, ebp, esi, edi
- amd64: rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15
- arm: r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14

The address of the next instruction is in a register:
eip (x86), rip (amd64), r15 (arm)

Various extensions add other registers (x87, MMX, SSE, etc).

Partial Register Access

ah al

ax

eax

rax

Registers can be accessed partially.
Due to a historical oddity, accessing eax will sign-extend out the rest of rax.
Other partial access preserve untouched parts of the register.

All partial accesses on amd64 (that I know of)
64 32 16 8H 8L
rax eax ax ah al
rcx ecx cx ch cl
rdx edx dx dh dl
rbx ebx bx bh bl
rsp esp sp spl
rbp ebp bp bpl
rsi esi si sil
rdi edi di dil
r8 r8d r8w r8b
r9 r9d r9w r9b
r10 r10d r10w r10b
r11 r11d r11w r11b
r12 r12d r12w r12b
r13 r13d r13w r13b
r14 r14d r14w r14b
r15 r15d r15w r15b

Instructions
General form:

OPCODE OPERAND OPERAND, ...

OPCODE - what to do
OPERANDS - what to do it on/with

mov rax, rbx

add rax, 1

cmp rax, rbx

jb some_location

Useful reference: http://ref.x86asm.net

http://ref.x86asm.net

Instructions (data manipulation)
Instructions can move and manipulate data in registers and memory.

mov rax, rbx
mov rax, [rbx+4]
add rax, rbx
mul rsi
inc rax
inc [rax]

Instructions (control flow)
Control flow is determined by conditional and unconditional jumps.

Unconditional: call, jmp, ret
Conditional: je

jne
jg
jl

jle
jge

ja
jb

jae
jbe

js
jns

jo
jno

jz
jnz

jump if equal
jump if not equal
jump if greater
jump if less
jump if less than or equal
jump if greater than or equal
jump if above (unsigned)
jump if below (unsigned)
jump if above or equal (unsigned)
jump if below or equal (unsigned)
jump if signed
jump if not signed
jump if overflow
jump if not overflow
jump if zero
jump if not zero

cmp rax, rbx

jb some_location 🤔

Instructions (conditionals)
Conditionals key off of the "flags" register:

- eflags (x86), rflags (amd64), aspr (arm).
Updated by (x86/amd64):

- arithmetic operations
- cmp - subtraction (cmp rax, rbx)
- test - and (test rax, rax)

je
jne

jg
jl

jle
jge

ja
jb

jae
jbe

js
jns

jo
jno

jz
jnz

jump if equal
jump if not equal
jump if greater
jump if less
jump if less than or equal
jump if greater than or equal
jump if above (unsigned)
jump if below (unsigned)
jump if above or equal (unsigned)
jump if below or equal (unsigned)
jump if signed
jump if not signed
jump if overflow
jump if not overflow
jump if zero
jump if not zero

ZF=1
ZF=0
ZF=0 and SF=OF
SF!=OF
ZF=1 or SF!=OF
SF=OF
CF=0 and ZF=0
CF=1
CF=0
CF=1 or ZF=1
SF=1
SF=0
OF=1
OF=0
ZF=1
ZF=0

Instructions (system calls)
Almost all programs have to interact with the outside world!

This is primarily done via system calls (man syscalls). Each system call is
well-documented in section 2 of the man pages (i.e., man 2 open).

System calls (on amd64) are triggered by:
1. set rax to the system call number
2. store arguments in rdi, rsi, etc (more on this later)
3. call the syscall instruction

We can trace process system calls using strace.

System Calls
System calls have very well-defined interfaces that very rarely change.

There are over 300 system calls in Linux. Here are some examples:
int open(const char *pathname, int flags) - returns a file new file descriptor of the open file (also shows up in
/proc/self/fd!)
ssize_t read(int fd, void *buf, size_t count) - reads data from the file descriptor
ssize_t write(int fd, void *buf, size_t count) - writes data to the file descriptor
pid_t fork() - forks off an identical child process. Returns 0 if you're the child and the PID of the child if you're the
parent.
int execve(const char *filename, char **argv, char **envp) - replaces your process.
pid_t wait(int *wstatus) - wait child termination, return its PID, write its status into *wstatus.

Typical signal combinations:
- fork, execve, wait (think: a shell)
- open, read, write (cat)

Critical resource: https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

Memory (stack)
The stack fulfils four main uses:

1. Track the "callstack" of a program.
a. return values are "pushed" to the stack during a call and "popped" during a ret

2. Contain local variables of functions.
3. Provide scratch space (to alleviate register exhaustion).
4. Pass function arguments (always on x86, only for

functions with "many" arguments on other architectures).

Relevant registers (amd64): rsp, rbp
Relevant instructions (amd64): push, pop

Memory (other mapped regions)
Other regions might be mapped in memory. We previously talked about regions
loaded due to directives in the ELF headers, but functionality such as mmap and
malloc can cause other regions to be mapped as well.

These will feature prominently (and be discussed) in future modules.

Memory (endianess)
Data on most modern systems is stored backwards, in little endian.

Why?
- Performance (historical)
- Ease of addressing for different sizes.
- (apocryphal) 8086 compatibility

Signedness: Two's Compliment
How to differentiate between positive and negative numbers?

One idea: signed bit (8-bit example):
- b00000011 == 3
- b10000011 == -3
- drawback 1: b00000000 == 0 == b10000000
- drawback 2: arithmetic operations have to be signedness-aware

(unsigned) b11111111 + 1 == 255 + 1 == 0 == b00000000
(signed) b11111111 + 1 == -127 + 1 == -126 == b11111110

Clever (but crazy) approach: two's complement
- b00000000 == 0
- 0 - 1 == b11111111 == 0xff == -1
- -1 - 1 == b11111110 == 0xfe == -2
- advantage: arithmetic operations don't have to be sign-aware!

(unsigned) b11111111 + 1 == 255 + 1 == 0 == b00000000
(signed) b11111111 + 1 == -1 + 1 == 0 == b00000000

- disadvantage: you might go crazy

As a benefit of two's complement, signedness mostly crops up in conditional checks.

Calling Conventions
Callee and caller functions must agree on argument passing.

Linux x86: push arguments (in reverse order), then call (which pushes return address), return value in eax
Linux amd64: rdi, rsi, rdx, rcx, r8, r9, return value in rax
Linux arm: r0, r1, r2, r3, return value in r0

Registers are shared between functions, so calling conventions should agree on
what registers are protected.

Linux amd64: rbx, rbp, r12, r13, r14, r15 are "callee-saved"

Other Resources
Rappel (https://github.com/yrp604/rappel) lets you explore the effects of instructions.

- easily installable via https://github.com/zardus/ctf-tools

Opcode listing: http://ref.x86asm.net/coder64.html

x86_64 architecture manual:
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-soft
ware-developer-instruction-set-reference-manual-325383.pdf

https://github.com/yrp604/rappel
https://github.com/zardus/ctf-tools
http://ref.x86asm.net/coder64.html
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

