
Module: Sandboxing
chroot

Yan Shoshitaishvili
Arizona State University

Simple Sandbox Example: Filesystem Isolation
Traditional sandbox: chroot jail.

- chroot() first appeared in Unix in 1979, BSD shortly afterwards.
- changes the meaning of "/" for a process (and its children)
- chroot("/tmp/jail") will disallow processes from getting out of the jail
- used to be the de-facto sandboxing utility
- no syscall filtering or other isolation

Effects of chroot
chroot("/tmp/jail") has two effects:

- For this process, change the meaning of "/" to mean "/tmp/jail".
- and everything under that: "/flag" becomes "/tmp/jail/flag"

- For this process, change "/tmp/jail/.." to go to "/tmp/jail"

chroot("/tmp/jail") does NOT:
- Close resources that reside outside of the jail.
- cd (chdir()) into the jail.
- Do anything else!

This has a number of implications...

chroot pitfalls: previously open resources
Neither of the effects of chroot() do anything to previously-open resources.

How is this useful?

Similar to open and execve, Linux has openat and execveat:
int open(char *pathname, int flags);
int openat(int dirfd, char *pathname, int flags);
int execve(char *pathname, char **argv, char **envp);
int execveat(int dirfd, char *pathname, char **argv, char **envp, int flags);

dirfd can be a file descriptor representing any open()ed
directory, or the special value AT_FDCWD (note: chroot()
does not change the current working directory)!

Many other system calls also have "at" variants!

chroot pitfalls: forgetfulness
The kernel has no memory of previous chroots for a process!

What happens if you chroot again?

How might that be used to escape?

Is chroot safe?
Generally, a user with an effective ID of 0 (i.e., a process run as root or SUIDed to
root) can always break out of a chroot, unless the chroot syscall is blocked!

Also missing other forms of isolation:
- PID
- network
- IPC

While chroot used to be popular to isolate services on a
machine, it has fallen out of favor. Replacements:

- cgroups
- namespaces
- seccomp

Useful Reference
Sets the kernel’s concept of the root directory of your process (and does
NOTHING else):

chroot(“/new/root/directory”)

Sets the kernel’s concept of the current working directory of your process:
chdir(“/new/working/directory”)

Opens a file relative to the current working directory:
open(“../../file”, O_RDONLY)
openat(AT_FDCWD, “../../file”, O_RDONLY);

