
Program Misuse
Privilege Escalation

Yan Shoshitaishvili
Arizona State University



Recall the Linux permission model
Every process has a user ID and a GID.

Every file and directory is owned by a user and group.

Child processes inherit from parent processes.



Some UIDs are better than others...
UID 0 is the Linux administrator user, root. Roughly speaking, you need root for:

- Installing software.
- Loading device drivers.
- Shutting down, rebooting.
- Changing system-wide settings.

But if you're UID 1000, how do you become UID 0?



Privilege Elevation
One way to elevate your privileges is to run an suid binary.

SUID is a bit in the Linux permission model:

SUID: execute with the eUID of the file owner rather than the parent process.
SGID: execute with the eGID of the file owner rather than the parent process.
Sticky: used for shared directories to limit file removal to file owners.

Common examples of SUID binaries: sudo, su, newgrp

S
U

ID
U

se
r 

R
ea

d

U
se

r 
W

ri
te

U
se

r 
E

xe
c

G
ro

up
 R

ea
d

G
ro

up
 W

ri
te

G
ro

up
 E

xe
c

W
or

ld
 R

ea
d

W
or

ld
 W

ri
te

W
or

ld
 E

xe
c

S
tic

ky

S
G

ID

https://xkcd.com/149 

https://xkcd.com/149


Quick Detour: e UID?
Three different type of user and group IDs:

Effective (eUID, eGID): the UID/GID used for most access checks.
Real (UID, GID): the "real" UID (or GID) of the process owner, used for things such 
as signal checks.
Saved: a UID/GID that your process could switch its eUID/eGID to. Used for 
temporarily dropping privileges.



With great power comes great responsibility...
eUID 0 is powerful. Aside from system management, root can (by default):

Open any file!
- Including things in the special /proc filesystem!
- And device-backed files!

Execute any program.
Assume any other UID or GID.
Debug any program.

Obviously, this can be a security disaster...



Privilege Escalation
Privilege Escalation is a class of exploit in which the
attacker elevates their privileges to (generally) root level.

Typical flow:

1. Gain a foothold on the system (vulnerable network service, intended shell 
access, code in app context, etc).

2. Identify a vulnerable privileged service.
3. Exploit the privileged service to gain its privileges.

Example: if an SUID binary has a security problem, an attacker can use it in a 
privilege escalation attack:



Security Woes
Who would be this careless?

1. Vulnerabilities in SUID binaries, such as sudo:
a. CVE-2019-14287: privilege escalation under certain configurations.
b. CVE-2018-10852: permission misconfiguration leading to privilege escalation
c. CVE-2017-1000367: improper input sanitization leading to command execution
d. CVE-2016-7076: privilege escalation under certain invocation scenarios
e. CVE-2016-7091: privileged information disclosure
f. CVE-2015-5602: privilege escalation under certain configurations
g. CVE-2014-0106: bypass of configuration restrictions

2. Unnecessary SUDOing (or running as root by other means)
other software.

a. Depressingly common in course grading systems, other shared server management software.
b. Too common with containerization (docker's default user is root).

3. OS-level vulnerabilities (stay tuned!).



Practice Problems!
This module's practice problems:

1. Connect to pwn.college.
2. Select a program path to unnecessarily SUID.

a. TONS of programs can be chosen, but not everything is viable to read the flag with...
3. Use this program to read /flag, if you can!

Let's demo a few:
- /bin/cat
- /usr/bin/more
- /usr/bin/find


