
Program Misuse
Mitigations
Yan Shoshitaishvili

Arizona State University

Security Mitigations
Over time, system designers became resigned to the fact that security errors are
here to stay… What to do?

Mitigations! Assuming that a security breach will occur, how can systems be
designed to limit the damage?

We’ve already seen this with Hacking Team‘s separated networks for tool
development.

We’ll see this over and over and over and over throughout the class.

Common theme: mitigations reduce but do not eliminate the
potential for harm.

Example: /bin/sh SUID mitigation
Most command injection vulnerabilities end up
hijacking /bin/sh.

Mitigation:
If /bin/sh is run as SUID
(i.e., eUID == 0 but rUID != 0),
it will drop privileges to the rUID
(i.e., eUID = rUID and rUID != 0),

To disable that: sh -p

Is command
injection bad?

Depends on the
process privileges.

eUID != 0?
Yes.

eUID == 0?
Very yes!

Example: Wireshark
Wireshark (a popular network sniffer) has historically been the subject of security
problems:

- It typically runs as root to have the permissions to sniff network traffic.
- It includes an enormous amount of "protocol parsers" to analyze different

types of network traffic, resulting in a very large attack surface.

Mitigation: wireshark‘s developers split it into two programs, one which dumps
traffic (dumpcap) and one which analyzes it (wireshark). Only dumpcap needs
root privileges.

More reading: https://wiki.wireshark.org/Development/PrivilegeSeparation

https://wiki.wireshark.org/Development/PrivilegeSeparation

General Mitigations: Program Misuse
How do we mitigate program misuse in general?

Sandboxing: we run the program in a setting that’s cordoned-off from sensitive
data and capabilities.

How? We’ll explore this later in the class during the Sandboxing module!

